Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(13): 137701, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206432

RESUMO

The metal-oxide-semiconductor (MOS) capacitor is one of the fundamental electrical components used in integrated circuits. While much effort is currently being made to integrate new dielectric or ferroelectric materials, capacitors of silicon dioxide on silicon remain the most prevalent. It is perhaps surprising therefore that the electric field within such a capacitor has never been measured, or mapped out, at the nanoscale. Here we present results from operando electron holography experiments showing the electric potential across a working MOS nanocapacitor with unprecedented sensitivity and reveal unexpected charging of the dielectric material bordering the electrodes.

2.
Phys Chem Chem Phys ; 19(42): 28676-28683, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29043311

RESUMO

The structure of Ir-doped LaAlO3/SrTiO3(001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO3 film as a function of the Ir concentration in the topmost SrTiO3 layer. It is shown that the LaAlO3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.

3.
Nat Commun ; 8: 15703, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589931

RESUMO

Monitoring a magnetic state using thermal or electrical activation is mandatory for the development of new magnetic devices, for instance in heat or electrically assisted magnetic recording or room-temperature memory resistor. Compounds such as FeRh, which undergoes a magnetic transition from an antiferromagnetic state to a ferromagnetic state around 100 °C, are thus highly desirable. However, the mechanisms involved in the transition are still under debate. Here we use in situ heating and cooling electron holography to quantitatively map at the nanometre scale the magnetization of a cross-sectional FeRh thin film through the antiferromagnetic-ferromagnetic transition. Our results provide a direct observation of an inhomogeneous spatial distribution of the transition temperature along the growth direction. Most interestingly, a regular spacing of the ferromagnetic domains nucleated upon monitoring of the transition is also observed. Beyond these findings on the fundamental transition mechanisms, our work also brings insights for in operando analysis of magnetic devices.

4.
Nano Lett ; 17(4): 2460-2466, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28277670

RESUMO

Most studies on MnAs material in its bulk form have been focused on its temperature-dependent structural phase transition accompanied by a magnetic one. Magnetostructural phase transition parameters in thin MnAs films grown on substrates present however some differences from the bulk behavior, and local studies become mandatory for a deeper understanding of the mechanisms involved within the transition. Up to now, only surface techniques have been carried out, while the transition is a three-dimensional phenomenon. We therefore developed an original nanometer scale methodology using electron holography to investigate the phase transition in an epitaxial MnAs thin film on GaAs(001) from the cross-section view. Using quantitative magnetic maps recorded at the nanometer scale as a function of the temperature, our work provides a direct in situ observation of the inhomogeneous spatial distribution of the transition in the layer depth and brings new insights on the fundamental transition mechanisms.

5.
Nano Lett ; 16(2): 1230-6, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26783831

RESUMO

Off-axis electron holography experiments have been combined with micromagnetic simulations to study the remnant magnetic states of electrodeposited Co/Cu multilayered nanocylinders. Structural and chemical data obtained by transmission electron microscopy have been introduced in the simulations. Three different magnetic configurations such as an antiparallel coupling of the Co layers, coupled vortices, and a monodomain-like state have been quantitatively mapped and simulated. While most of the wires present the same remnant state whatever the direction of the saturation field, we show that some layers can present a change from an antiparallel coupling to vortices. Such a configuration can be of particular interest to design nano-oscillators with two different working frequencies.

6.
Phys Rev Lett ; 111(16): 167202, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182295

RESUMO

In this Letter we highlight direct experimental evidence of Fe(2+)-Fe3+ charge ordering at room temperature in hematite-ilmenite Fe(1.35)Ti(0.65)O(3-δ) epitaxial thin films grown by pulsed laser deposition, using aberration-corrected scanning transmission electron microscopy coupled to high-resolution energy electron-loss spectroscopy. These advanced spectromicroscopy techniques demonstrate a strong modulation of the Fe2+ valence state along the c axis. Density functional theory calculations provide crucial information on the key role of oxygen vacancies in the observed charge distributions. Their presence at significant levels leads to the localization of extra electrons onto reduced Fe2+ sites, while Ti remains solely +4. The magnetic and transport properties of these films are reviewed in the light of the present results regarding their ferrimagnetic character correlated with the Fe2+ modulation and their semiconducting behavior interpreted by an Efros-Shklovskii variable-range hopping conduction regime via Fe2+ and Fe3+ centers. The experimental evidence of only one type of mixed valence state, i.e., Fe2+ and Fe3+, in the Fe(2-x)Ti(x)O(3-δ) system will thus help to interpret further the origin of its geomagnetic properties and to illuminate fundamental issues regarding its spintronic potential.

7.
J Phys Condens Matter ; 25(25): 256002, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23719291

RESUMO

We used the DFT + U method to describe the modification of the physical properties induced by cationic point defects in cubic magnetite Fe3O4. We considered the case of Fe vacancies and interstitial atoms in non-stoichiometric magnetite, and of Frenkel defects in a stoichiometric crystal. For each of these defects, we give results on the modification of the magnetic moment of atoms near the defect. We describe the local reorganization of the electric charge which is responsible for changes in the average oxidation degree of Fe atoms. We show that gap states, when they exist, do not destroy the half-metallic character of magnetite. Fe defects, however, change the filling of bands crossing the Fermi level and must be mostly responsible for a decrease in the magnetization.

8.
Phys Rev Lett ; 108(17): 176602, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680889

RESUMO

In combining spin- and symmetry-resolved photoemission, magnetotransport measurements and ab initio calculations we detangled the electronic states involved in the electronic transport in Fe(1-x)Co(x)(001)/MgO/Fe(1-x)Co(x)(001) magnetic tunnel junctions. Contrary to previous theoretical predictions, we observe a large reduction in TMR (from 530 to 200% at 20 K) for Co content above 25 atomic% as well as anomalies in the conductance curves. We demonstrate that these unexpected behaviors originate from a minority spin state with Δ(1) symmetry that exists below the Fermi level for high Co concentration. Using angle-resolved photoemission, this state is shown to be a two-dimensional state that occurs at both Fe(1-x)Co(x)(001) free surface, and more importantly at the interface with MgO. The combination of this interface state with the peculiar density of empty states due to chemical disorder allows us to describe in details the complex conduction behavior in this system.

9.
Ultramicroscopy ; 109(12): 1465-71, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19744791

RESUMO

Measuring magnetic properties at a nanometre scale could be achieved in a transmission electron microscope by using dedicated techniques. Among these, the energy-loss magnetic chiral dichroism has already proven its efficiency and needs improvements to be widely used. The energy spectrum imaging technique can be used to measure dichroism but some image treatments are necessary due to distortions. This paper deals with the corrections that need to be applied on the data to remove all distortions, especially drift and non-isochromaticity, and extract reliable information. The measure and correction procedures are developed on an artificial data cube containing the dichroic signal and some noise to prove the efficiency of the routines.

10.
Phys Rev Lett ; 102(21): 217603, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519136

RESUMO

In the search for multiferroic materials magnetic compounds with a strongly elongated unit-cell (large axial ratio c/a) have been scrutinized intensely. However, none was hitherto proven to have a switchable polarization, an essential feature of ferroelectrics. Here, we provide evidence for the epitaxial stabilization of a monoclinic phase of BiFeO3 with a giant axial ratio (c/a=1.23) that is both ferroelectric and magnetic at room temperature. Surprisingly, and in contrast with previous theoretical predictions, the polarization does not increase dramatically with c/a. We discuss our results in terms of the competition between polar and antiferrodistortive instabilities and give perspectives for engineering multiferroic phases.

11.
Ultramicroscopy ; 108(5): 393-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17619085

RESUMO

We present the quantitative measurement of inelastic intensity distributions in diffraction patterns with the aim of studying magnetic materials. The relevant theory based on the mixed dynamic form factor (MDFF) is outlined. Experimentally, the challenge is to obtain sufficient signal for core losses of 3d magnetic materials (in the 700-900eV energy-loss range). We compare two experimental settings in diffraction mode, i.e. the parallel diffraction and the large-angle convergent-beam electron diffraction configurations, and demonstrate the interest of using a spherical aberration corrector. We show how the energy spectrum imaging (ESI) technique can be used to map the inelastic signal in a data cube of scattering angle and energy loss. The magnetic chiral dichroic signal is measured for a magnetite sample and compared with theory.

12.
Micron ; 37(5): 478-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16376556

RESUMO

The trend in reducing device dimension induces new physical properties and requires the development of measurement tools at the nanometer scale. This paper deals with the relation between magnetism and structure of thin films. We have chosen cobalt as a ferromagnetic layer and chromium as a bcc buffer. Magnetic and structural investigations have been led on epitaxial Co/Cr layers grown on MgO (001) substrates. The thickness of the cobalt layer varies from 0.75 to 20 nm. Investigations on the cobalt layer by EXAFS and HRTEM give evidence for a bcc or a hcp structure depending on the cobalt thickness. Magnetic measurements using SQUID indicate that the saturation magnetisation per volume unit is constant for the layers. EELS experiments have been carried out to measure any evolution in the I(L3)/I(L2) ratio for ferromagnetic layers of different thickness. We discuss the influence of structural and magnetic contributions on the evolution of the ratio with the cobalt thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...